FORM OF THE GENERALIZED THERMODYNAMIC SURFACE OF REAL GASES
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Features of the geometric structure of thermodynamic surfaces of nonpolar nonasso-
ciative gases and liquids are considered to produce an effective generalization.

Study of single~parameter families of isoehoric ideal curves satisfying the condition

|

(pv--- RT) T" J =0, (1

where n is a parameter defining the concrete ideal curve, has shown [1, 2] the desirability of
transition from representation of the thermodynamic surface in the space (P, v, T) to the -
space (pv, p, T), for in the latter case the form of the surface simplifies and approaches
linearity. This is immediately evident in the case of an ideal gas, for which the thermody-
namic surface becomes a plane perpendicular to the p axis.

A simple model for real materials is the van der Waals gas, the equation of state of
which has the form

Z::l%—<14~ i~ ) ® . (2)
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Here w = p/pes, T = T/TR (where T, is the Boyle temperature, po is the density corresponding
to extrapolation of the line Z = 1, the ideal gas curve,® to T = 0, and for a van der Waals
gas Ty = a/Rb and po = 1/b).

Transforming to the space (pv, p, T) in the reduced coordinates , 7, y=puv/RTy, we obtain
from Eq. (2)

w2 o —o—P41=0 (3)
As can easily be seen by finding the invariants of this system relative to rotation and paral-
lel translation of the coordinate system, it is a hyperbolic paraboloid [3].

It should be noted immediately that because of the rectilinearity of the ideal gas curve
intrinsic to the van der Waals model (t = 1 — w) Eq. (2) allows the single-parameter general-
ization

*At present there is no unified opinion as to what this curve should be called. In Soviet
literature one finds most often the term "ideal gas curve" (E. E. Shpil'rain and P. M. Kes-
sel’man, Fundamentals of the Theory of Thermophysical Properties of Materials, Ya. Z. Kazav-
chinskii, Lectures on Thermodynamics, A. A. Vasserman, Ya. Z. Kazavchinskii, V. A. Rabino~
vich, Thermophysical Properties of Air and Its Components, L. P. Filippov, Similarity of
Properties of Matter, etc. Occasionally one meets the term introduced by A. I. Bachinskii,
"orthometric curve," as well as "ideal curve" (M. P. Vukalovich, I, I. Novikov, The Equa-
tion of State of a Real Gas).

In Western literature the curve is called the classical ideal curve (Morsey, Shtraub,
Shoeber), the unitary compressibility curve (Holleran), the zeroth-order characteristic curve
(Brown, Stefanson) and even, on one occasion, the Boyle curve (Pauls). This last term is
erroneous, since it should be applied to the curve formed by minima of the compressibility
isotherms.

We will use the term "ideal gas curve," because the equation of this line formally co~
incides with the equation of state of an ideal gas.
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where the individual parameter A > 0. To this equation there corresponds a continuous family
of hyperbolic paraboloids which intersect along the ideal gas curve. Since the ideal gas
curve is rectilinear for the entire class of nonpolar nonassoclative substances and in the re-
duced coordinates is the line of intersection of their thermodynamic surfaces [4], Eq. (4) is
an analytical expression of a single-parameter law of corresponding states, which has been
established empirically for just this class of materials [5].

As 1is well known [3], the hyperbolic parabolid has two pairs of rectilinear directrices,
described in the canonical variables (x, y, z) by the systems of equations

r—y=up r-+y=»x
and (5)
0 A

It is important to clarify what real physical lines on the thermodynamic surface correspond
to these directrices,

By performing parallel translation and rotations of the coordinate system after several
simple but lengthy transformations, for the thermodynamic surface of a Van der Waals gas in
the generalized form of Eq. (4) we obtain the following equations relating the canonical var-
iables to w, Y, and T:

;
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Then the first pair of directrices corresponds to linear isochors
o=2p+1,
: 1 A €))
= — Ap 2-}--—)——(A-1+———->T.
v k B 2p
The second pair of directrices is described by the equtions
o= (14 -2) 0—ox
(8)

1p=<1+ 2’:4 )-,L[(A—1)(1+—2—7;l—)—4} o,

which correspond to the equations of [1, 2] for the ideal curves of Eq. (1), obtained by pro-
cessing of experimental thermal data, with each ideal curve characterized by a parametric temp-
erature equal to © = 1 + /24,

Thus, the generalized van der Waals equation (4) in the space (pV, o, T) corresponds to
thermodynamic surfaces in the form of a continuous family of hyperbolic paraboloids formed by
either rectilinear isochors or rectilinear ideal curves, Eq. (1). If we assume that the ideal
curves of real materials are rectilinear, then it is natural to replace the expression in
brackets in Eq. (4), which is the second virial coefficient of the van der Waals gas as a func-
tion of parametric temperature © = 1/(l — w), by the real second virial coefficient B(O).

This leads to the equation of state of {1], while the parameter A coincides with the Holleran
parameter kp = poVp (whexe Vg = (TdB/dT)TB is the Boyle volume).
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However, it should be considered that for real materials rectilinear isochors do not
exist, and the ideal curves can only approximately be considered rectilinear. Then it is log-
ical to assume that the value A is a function of temperature and density, and maintain the ex-
pression in brackets in Eq. (4) unchanged in order to agree with the reliably determined ex-
perimental fact of rectilinearity of the ideal gas curve. It should be noted that direct de-
termination of the functional dependence A = A(t, w) from p-, v-, T-data is in itself a com-
plex problem, since solution of Eq. (4) for A is quite sensitive to the accuracy of the therm-
al data, especially at low densities and high temperatures. Thus, for example, for argon at
150°K and density w = 0.05 the uncertainty in calculationof A with thermal data defined to an
accuracy of 0.1-0.37% comprises 2-3%, but at 300°K and the same density the uncertainty reaches
10%, with increase in density to w = 0.2 reducing this value only to ~6%. If we consider that
values of A determined from thermal data at T > (1.2—1.5)TCr along isotherms vary within lim-
its of +57%, it is evident that the general pattern of the dependence of A on w is quite dis-
torted.

This fact permits use of the assumption that A is a function of temperature only, and
taking A = ur‘lls, from Eq. (4) we can obtain the equation of state of [6], which permits cal-
culation of thermodynamic properties of gases at T > (1.2~1.5)T., with high accuracy. However,
at T < 1.5T., the function A = A(w) has been traced quite well, with A decreasing at low dens-
ities, reaching a minimum at w ® 0.25-0.35, and then increasing somewhat, remaining practically
constant at 0.4 < w < 0,6. We note that at 0.95 < T/TCr < 1.5 the ideal gas curve experiences
a "diffused" break and becomes straight only in the liquid region. This makes use of equations
of the form of Eq. (4) in this temperature interval improper, since the equation describes a
linear dependence of temperature upon density along the ideal gas curve.

Substituting Eq. (4) in Eq. (1) yields
nA + 1 (04/07),

T = (1 — ). (9
(n+ DA+ T (04/97),

The factor befere (1 — w) may be constant along the ideal curve, if A is a homogeneous
function of temperature, i.e., A = at®, This condition corresponds to rectilinear projections
of the ideal curve on the plane (T, p) while the parametric temperature for each ideal curve
is defined by the relatiounship

n—+
@ = —-____!3____ (10)
n+p+1
Values of O calculated with this relationship for various values of n agree with results ob-
tained using a high accuracy empirical equation of state from [7] for nitrogen within the lim-
its of accuracy of their definition in the temperature interval 200 < T < 1000°K.

However, in this case the projections of the ideéal curve on the planes (pV, p) and (pV,
T) are nonlinear. In fact, from Eq. (4), it follows that

¥ == 0 4 (@B (0 — 1){1 — o) — 6] 0. ’ QL)

From this it is evident that the slope of the projection of the ideal curve on the plane (¢,
w) is a function of density, but in view of the smallness of 8 in a limited region of states
the curvature of the ideal curve is small, which permits assuming the thermodynamic surface
linear at least within this region.

We note that according to [8] the internal pressure from Eq. (4) is defined as a quadra-
tic function of density 7, = Aw®. This corresponds to assumption of an equiprobable distribu~
tion of molecules in spacé, the basis of the van der Waals theory, and thus has definite lim-
itations. However, these limitations involve the low pressure range, and are obviously rela-
ted to formation of molecular associations. In fact, because of formation of the latter, it
becomes impossible to speak of an equiprobable distribution of molecules and the internal
pressure will be determined by the number of associations; consequently, the value of A will
depend on density. It is then natural to expect that the maximum number of associations will
occur at densities close to critical, and since for nonpolar substances the latter is equal
to wgy * 0.25-0.29, it is in this region or somewhat further that minima are found in the
curves A = A(t, w) at T < (1.2=1.5) Tope

A second limitation is related to development of close order in the spatial distribution
cf molecules at high density, which also leads to change in the character of the dependence
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of internal pressure on density, which approaches a lattice dependence [8]. The correspond-
ing transition is observed at densities w ¥ 0.5-0,6 and it should be noted that curvature of
the ideal gas curve takes place at just such densities. Nevertheless, on the whole this does
not change the structure of Eq. (4) and substitution of the expression for A following from
lattice internal pressure [8] leads to the equation of state of a liquid of [9], which can be
written in the form

a=1m+yEe* o+ )T+o—1) (12)

where ™ = p/RTppo; vy(¢) is a function of temperature only.

If we take for y. just as for A, a power dependence on temperature, then it follows from
Eq. (12) that the ideal curves have linear projections on the plane (T, p), but their projec~
tions on the planes (pv, p) and (PV, T) will be nonlinear. Nevertheless, over a quite wide
range of states the deviations from a linear dependence are small, which permits use of the
approximation of a linear thermodynamic surface for the liquid state as well [10]. Tt should
be noted that Eq. (12) is equally applicable to a liquid and a dense gas. The only differences
are the parameters po and Tp and the coefficients a and B for the power dependence of the
function v = y(1).

NOTATION

P, pressure; v, specific volume; p, density; T, temperature; Z = P/RTp, compressibility
coefficient; w, T, 7, dimensionless density, temperature, and pressure; a and b, constants in
van der Waals equation; B, second virial coefficient,

LITERATURE CITED

1. V. I. Nedostup and E. P. Gal'kevich, Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 179-182
(1978).

2, V. I. Nedostup and E. P. Gal'kevich, Inzh.-Fiz. Zh., 38, No. 4, 702-708 (1980).

3. G. A. Korn and T. M. Korn, Manual of Mathematics, McGraw-Hill (1967).

4. V. I. Nedostup, Zh. Fiz. Khim., 44, No. 9, 2203-2206 (1970).

5. L. P. Filippov, Similarity of Properties of Substances [in Russian], Moscow (1978).

6. L. A. Serovskii, Zh. Fiz. Khim., 59, No. 5, 1251-1253 (1985).

7. V. V. Sychev et al., Thermodynamic Properties of Nitrogen [in Russian], Moscow (1977).
8. A. I. Burshtein, Zh. Fiz. Khim., 48, No. 11, 2684-2689 (1974).

9. V. I. Nedostup, Zh. Fiz. Khim., 57, No. 6, 1554-1555 (1983).
10. V. I. Nedostup and E. P. Gal'kevich, Teplofiz. Vys. Temp., 21, No. 1, 186-188 (1983).

786



