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Features of the geometric structure of thermodynamic surfaces of nonpolar nonasso- 
ciative gases and liquids are cgnsidered to produce an effective ~eneralizatlon. 

Study of single-parameter families of isoehoric ideal curves satisfying the condition 

i-~T(PV ..... RT) T'~j,o=~O, (1) 

where n is a parameter defining the concrete ideal curve, has shown [i, 2] the desirability of 
transition from representation of the thermodynamic surface in the space (P, v, T) to the 
space (pv, 0, T), for in the latter case the form of the surface simplifies and approaches 
llnearity. This is immediately evident in the case of an ideal gas, for which the thermody- 
namic surface becomes a plane perpendicular to the p axis. 

A simple model for real materials is the van der Waals gas, the equation of state of 
which has the form 

Z= 1-4-(1. 1--o) ) ~  1--(o(~ (2) 

Here ~ = P/Po, �9 = T/TB (where T B is the Boyle temperature, Po is the density corresponding 
to extrapolation of the line Z =-i, the ideal gas curve,* to T = 0~ and for a van der Waals 

gas T B = a/Rb and Po = i/b). 

Transforming to the space (pv, p, T) in the reduced coordinates e, T,~=pv/RTB, we obtain 
from Eq. (2) 

{~2 + 4{ o __ ~ __ ~ + ~ _ 0 (3) 

As can easily be seen by finding the invariants of this system relative to rotation and paral- 
lel translation of the coordinate system, it is a hyperbolic paraboloid [3]. 

It should be noted immediately that because of the rectilinearity of the ideal gas curve 
intrinsic to the van der Waals model (T = 1 -- ~) Eq. (2) allows the single-parameter general- 
ization 

*At present there is no unified opinion as to what this curve should be called. In Soviet 
literature one finds most often the term "ideal gas curve" (~. ~. Shpil'rain and P. M. Kes- 
sel'man, Fundamentals of the Theory of Thermophysical Properties of Materials, Ya. Z. Kazav- 
chinskii, Lectures on Thermodynamics, A. A. Vasserman, Ya. Z. Kazavchinskil, V. A. Rabino- 
rich, Thermophysical Properties of Air and Its Components, L. P. Filippov, Similarity of 
Properties of Matter, etc. Occasionally one meets the term introduced by A. I. Bachlnskii, 
"orthometric curve," as well as "ideal curve" (M. P. Vukalovich, I. I. Novikov, The Equa- 
tion of State of a Real Gas). 

In Western literature the curve is called the classical ideal curve (Mersey, Shtraub, 
Shoeber), the unitary compressibility curve (Holleran), the zeroth-order characteristic curve 
(Brown, Stefanson) and even, on one occasion, the Boyle curve (Pauls). This last term is 
erroneous, since it should be applied to the curve formed by minima of the compressibility 
isotherms. 

We will use the term "ideal gas curve," because the equation of this line formally co- 
incides with the equation of state of an ideal gas. 

A. V. Bogatskii Physicochemicai Institute, Academy of Sciences of the Ukrainian SSR, 
Odessa. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 53, No. i, pp. 55-59, July, 
1987. Original article submitted April 29, 1986. 

0022-0841/87/5301-0783512.50 �9 1988 Plenum Publishing Corporation 783 



Z = - I + A ( 1  1--(o ) o) (4) 
"~ 1 - - ( , )  ' 

where the individual parameter h > 0. To this equation there corresponds a continuous family 
of hyperbolic paraboloids which intersect along the ideal gas curve. Since the ideal gas 
curve is rectilinear for the entire class of nonpolar nonassociatlve substances and in the re- 
duced coordinates is the line of intersection of their thermodynamic surfaces [4], Eq. (4) is 
an analytical expression of a single-parameter law of corresponding states, which has been 
established empirically for just this class of materials [5]. 

As is well known [3], the hyperbolic parabolid has two pairs of rectilinear dlrectrices, 
described in the canonical variables (x, y, z) by the systems of equations 

x - - y = p  x + y = E  

and (5) 

2z 2z 
x + y  - x - - y  - 

It is important to clarify what real physical lines on the thermodynamic surface correspond 
to these directrices. 

By performing parallel translation and rotations of the coordinate system after several 
simple but lengthy transformations, for the thermodynamic surface of a Van der Waals gas in 
the generalized form of Eq. (4) we obtainthefollowing equations relating the canonical var- 
iables to ~, ~, and T: 

x= (A+T1  )(,~_ 1)+ r + (A-- 1)-~, 

y= ( A -- + )  ((o --1) + r +(A-- 1)'~, 
(6) 

A A 
z = ~ ( o ~ - -  I )  . . . .  x .  

2 2 

Then the first pair of directrlces corresponds to linear isochors 

(7) 

The second pair of directrices is described by the equtions 

CO, 
(8) 

which correspond to the equations of [i, 2] for the ideal curves of Eq. (I), obtained by pro- 
cessing of e x p e r i m e n t a l  thermal data, with each ideal curve characterized by a parametric temp- 
erature equal to 8 = I + I/2A. 

Thus, the generalized van der Waals equation (4) in the space (pV, 0, T) corresponds to 
thermodynamic surfaces in the form of a continuous family of hyperbolic paraboloids formed by 
either rectilinear isochors or rectilinear ideal curves, Eq. (i). If we assume that the ideal 
curves of real materials are rectilinear, then it is natural to replace the expression in 
brackets in Eq. (4~, which is the second virial coefficient of the van der Waals gas as a func- 
tion of parametric temperature 8 = T/(I -- ~), by the real second virial coefficient B(@). 
This leads to the equation of state of [i], while the parameter A coincides with the Holleran 
parameter k B = ~oV B (where V B = (TdB/dT)T B is the Boyle volume). 
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However, it should be considered that for real materials rectilinear isochors do not 
exist, and the ideal curves can only approximately be considered rectilinear. Then it is log- 
ical to assume that the value A is a function of temperature and density, and maintain the ex- 
pression in brackets in Eq. (4) unchanged in order to agree with the reliably determined ex- 
perimental fact of rectilinearity of the ideal gas curve. It should be noted that direct de- 
termination of the functional dependence A = A(r, ~) from p-, v-, T-data is in itself a com- 
plex problem, since solution of Eq. (4) for A is quite sensitive to the accuracy of the therm- 
al data, especially at low densities and high temperatures. Thus, for example, for argon at 
150~ and density m = 0.05 the uncertainty in calculation of A with thermal data defined to an 
accuracy of 0.1-0.3% comprises 2-3%, but at 300~ and the same density the uncertainty reaches 
10%, with increase in density to m = 0.2 reducing this value only to -6%. If we consider that 
values of A determined from thermal data at T > (l.2-1.5)Tcr along isotherms vary within lim- 
its of +5%, it is evident that the general pattern of the dependence of A on m is quite dis- 
torted. 

This fact hermits use of the assumption that A is a function of temperature only, and 
taking A = ~T -*7a, from Eq. (4) we can obtain the equation of state of [6], which permits cal- 
culation of thermodynamic properties of gases at T > (l.2-1.5)Tcr with high accuracy. However, 
at T < l.bTcr the function A = A(m) has been traced quite well, with A decreasing at low dens- 
ities, reaching a minimum at ~ = 0.25-0.35, and then increasing somewhat, remaining practically 
constant at 0.4 < m < 0.6. We note that at 0.95 < T/Tcr < 1.5 the ideal gas curve experiences 
a "diffused" break and becomes straight only in the liquid region. This makes use of equations 
of the form of Eq. (4) in this temperature interval improper, since the equation describes a 
linear dependence of temperature upon density along the ideal gas curve. 

Substituting Eq. (4) in Eq. (i) yields 

T = (i --~) (9) 
(n -b 1) A + �9 (aA/aT)~ 

The factor before (i -- ~) may be constant along the ideal curve, if A is a homogeneous 
function of temperature, i.e., A = e~B. This condition corresponds to rectilinear projections 
of the ideal curve on the plane (T, p) while the parametric temperature for each ideal curve 
is defined by the relationship 

0 - -  n §  
n + ~ + i (10) 

Values of O calculated with this relationship for various values of n agree with results ob- 
tained using a high accuracy empirical equation of state from [7] for nitrogen within the lim- 
its of accuracy of their definition in the temperature interval 200 < T < I000~ 

However, in this case the projections of the ideal curve on the planes (pV, 0) and (pV, 
T) are nonlinear. In fact, from Eq. (4), it follows that 

==@4-[~@~(Q--I)(I- o))~--O]e (ii) 

From this it is evident that the slope of the projection of the ideal curve on the plane (~, 
~) is a function of density, but in view of the smallness of fl in a limited region of states 
the curvature of the ideal curve is small, which permits assuming the thermodynamic surface 
linear at least within this region. 

We note that according to [8] the internal pressure from Eq. (4) is defined as a quadra- 
tic function of density ~. = A~ a. This corresponds to assumption of an equiprobable distribu- 

1 
tion of molecules in space, the basis of the van der Waals theory, and thus has definite llm- 
itations. However, these limitations involve the low pressure range, and are obviously rela- 
ted to formation of molecular associations. In fact, because of formation of the latter, it 
becomes impossible to speak of an equiprobable distribution of molecules and the internal 
pressure will be determined by the number of associations; consequently, the value of A will 
depend on density. It is then natural to expect that the maximum number of associations will 
occur at densities close to critical, and since for nonpolar substances the latter is equal 
to ~cr = 0.25-0.29, it is in this region or somewhat further that minima are found in the 
curves A = A(r, ~) at T < (1.2-1.5) Tcr. 

A second limitation is related to development of close order in the spatial distribution 
of molecules at high density, which also leads to change in the character of the dependence 
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of internal pressure on density, which approaches a lattice dependence [Sj. The correspond- 
ing transition is observed at densities m = 0.5-0,6 and it should be noted that curvature of 
the ideal gas curve takes place at just such densities. Nevertheless, on the whole this does 
not change the structure of Eq. (4) and substitution of the expression for A following from 
lattice internal pressure [8] leads to the equation of state of a liquid of [9], which can be 
written in the form 

= To) + 7 (~) ~3 (~ + 1)(z + ~ - -  1), (12)  

where ~ = p/RT~oo; y(r) is a function of temperature only. 

If we take for 7. just as for A, a power dependence on temperature, then it follows from 
Eq. (12) that the ideal curves have linear projections on the plane (T, 0), but their projec- 
tions on the planes (p~, 0) and (PV, T) will be nonlinear. Nevertheless, over a quite wide 
range of states the deviations from a linear dependence are small, which permits use of the 
approximation of a linear thermodynamic surface for the liquid state as well [i0]. It should 
be noted that Eq. (12) is equally applicable to a liquid and a dense gas. The only differences 
are the parameters 0o and T B and the coefficients ~ and B for the power dependence of the 
function Y ffi y(T). 

NOTATION 

P, pressure; v, specific volume; 0, density; T, temperature; Z = P/RTo, compressibility 
coefficient; m, T, ~, dimensionless density, temperature, and pressure; a and b, constants in 
van der Waals equation; B, second vlrial coefficient. 
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